Extensions 1→N→G→Q→1 with N=C3xD5 and Q=C22xC4

Direct product G=NxQ with N=C3xD5 and Q=C22xC4
dρLabelID
D5xC22xC12240D5xC2^2xC12480,1136

Semidirect products G=N:Q with N=C3xD5 and Q=C22xC4
extensionφ:Q→Out NdρLabelID
(C3xD5):(C22xC4) = C22xS3xF5φ: C22xC4/C22C22 ⊆ Out C3xD560(C3xD5):(C2^2xC4)480,1197
(C3xD5):2(C22xC4) = S3xC2xC4xD5φ: C22xC4/C2xC4C2 ⊆ Out C3xD5120(C3xD5):2(C2^2xC4)480,1086
(C3xD5):3(C22xC4) = C22xD5xDic3φ: C22xC4/C23C2 ⊆ Out C3xD5240(C3xD5):3(C2^2xC4)480,1112
(C3xD5):4(C22xC4) = C23xC3:F5φ: C22xC4/C23C2 ⊆ Out C3xD5120(C3xD5):4(C2^2xC4)480,1206
(C3xD5):5(C22xC4) = F5xC22xC6φ: C22xC4/C23C2 ⊆ Out C3xD5120(C3xD5):5(C2^2xC4)480,1205

Non-split extensions G=N.Q with N=C3xD5 and Q=C22xC4
extensionφ:Q→Out NdρLabelID
(C3xD5).1(C22xC4) = C4xS3xF5φ: C22xC4/C4C22 ⊆ Out C3xD5608(C3xD5).1(C2^2xC4)480,994
(C3xD5).2(C22xC4) = C2xDic3xF5φ: C22xC4/C22C22 ⊆ Out C3xD5120(C3xD5).2(C2^2xC4)480,998
(C3xD5).3(C22xC4) = C2xC4xC3:F5φ: C22xC4/C2xC4C2 ⊆ Out C3xD5120(C3xD5).3(C2^2xC4)480,1063
(C3xD5).4(C22xC4) = F5xC2xC12φ: C22xC4/C2xC4C2 ⊆ Out C3xD5120(C3xD5).4(C2^2xC4)480,1050

׿
x
:
Z
F
o
wr
Q
<